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Machine Learning

Given

D :=
{
(xi, yi)

}N

i=1
⊆

(
X × {±1}

)N
⊆

(
Rn × {±1}

)N
,

our goal is to find a linear function x⊤ω + b such that for any
i, yi(x⊤

i ω + b) ≥ 0, where ω ∈ Rn, b ∈ R.
Given a special loss function L : R× R → [0,+∞], it is done
by solving

min
ω∈Rn,b∈R

N∑
i=1

L(yi, x⊤
i ω + b).

But it is an ill-posed problem.



Regularization and Sparsity

Tikhonov Regularization is a crucial technique to prevent
machine learning algorithms from over-fitting, it has the
general form

min
ω∈Rn,b∈R

N∑
i=1

L(yi, x⊤
i ω + b) + λ∥ω∥22.

The final target of regularization is to obtain a sparse result,
meaning that as many of the components of the parameter
have values of 0 as possible. It is always done by 1-norm
regularization.
Understanding regularization and sparsity can help us to dive
deep into learning theorems. There are many aspects to
explore them, such as functional analysis, convex analysis,
statistical learning, etc..



Support Vector Machine Classifiers

Support Vector Machine Classifier
(SVM classifier) is by far one of the
most successful binary-classification
methods, it can finally be
represented by

min
ω∈Rn,b∈R

N∑
i=1

[1−yi(x⊤
i ω+b)]++λ∥ω∥22,

where [·]+ = max{0, ·}.
The Euclidean distance used by the
classical SVM classifier leads to
2-norm regularization.
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Kernel-based Learning Methods

Reproducing Kernel Hilbert Spaces (RKHSs) and Reproducing
Kernel Banach Spaces (RKBSs) have been viewed as ideal
spaces for kernel-based learning methods.
For example, given a kernel function K : X × X → C, there
exists a unique RKHS HK related to K equipped the norm
∥f∥HK , the learning task on HK is

min
f∈HK

N∑
i=1

L(yi, f(xi)) + λ∥f∥2HK ,

whose solution has the form fh =
∑N

i=1 ciK(xi, ·) by several
celebrated representer theorems.



Motivation and Basic Ideas

1. Representer Theorem
2. Exact Representer

Theorem
3. Relaxed Representer

Theorem
(in l1-norm RKBSs)
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Distances between Points and Hyperplanes

Based on Theorem 2.2 in (O. L. Mangasarian, 1999), the
distance derived from a general norm ∥ · ∥ from any points to
a hyperplane

P := {x : x⊤ω + b = 0 , x ∈ Rn}

is given by

dist(x,P) = |x⊤ω + b|
∥ω∥∗

,

where ∥ · ∥∗, defined as ∥z∥∗ = sup{z⊤x : ∥x∥ < 1}, is the
dual norm of ∥ · ∥.



Distances between Points and Hyperplanes: Examples

Point
Hyperplane
2 norm projection
1 norm projection

 norm projection

Figure Distances derived from special norms

For 2 norm ∥ · ∥2,

dist(x,P) = ∥x⊤ω + b∥
∥ω∥2

.

For ∞ norm ∥ · ∥∞,

dist(x,P) = ∥x⊤ω + b∥
∥ω∥1

.



Non-Euclidean Support Vector Machine Classifiers

The non-Euclidean SVM classifier has the form

min
ω,b,ξ

∥ω∥∗ + C
N∑

i=1
ξi

subject to yi(xT
i ω + b) ≥ 1− ξi, ∀i,

ξi ≥ 0, ∀i.

(1)

where C is the “cost” parameter, ξ = {ξi}N
i=1 are slack

variables.
It is equivalent to the following unconstrained optimization
problem

min
ω,b

N∑
i=1

[1− yi(xT
i ω + b)]+︸ ︷︷ ︸

Hinge Loss

+ λ∥ω∥∗︸ ︷︷ ︸
Arbitrary Norm Regularization

. (2)



Sparsity of 1-norm SVM Classifiers I

(a) 2 norm. (b) ∞ norm.

Figure Maximal margin classifiers by 2 norm and ∞ norm in the case of 2
distinct points.



Sparsity of 1-norm SVM Classifiers II

(a) Infinite solutions in data space. (b) Infinite solutions in parameter
space.

Figure The geometric explanation for infinite solutions for the SVM
classifier by ∞-norm margin.



Sparsity of 1-norm SVM Classifiers III

(a) Unique solution in data space. (b) Unique solution in parameter
space.

Figure The geometric explanation for unique solution for the SVM
classifier by ∞-norm margin.



Special Examples: Tensor Form of Non-Euclidean SVM
Classifiers I

Consider m norm where m is an even number, the primal
Lagrange function of (1) is

LP =
m − 1

m ∥ω∥
m

m−1
m

m−1
+ C

N∑
i=1

ξi

−
N∑

i=1

αi[yi(x⊤
i ω + b)− (1− ξi)]−

N∑
i=1

µiξi,

where αi ≥ 0, µi ≥ 0, i = 1, 2, . . . ,N are Lagrange multipliers.
The Lagrange (Wolfe) dual function is

LD =

N∑
i=1

αi −
1

m

N,N,...,N∑
i1,i2,...,im=1

m∏
k=1

(
αikyik

( d∑
j=1

m∏
k=1

xik,j
))

,

where xik,j is the jth element of xik .



Special Examples: Tensor Form of Non-Euclidean SVM
Classifiers II

Let 1 = (1)N
i=1 and

Am :=
( m∏

k=1

yik(
d∑

j=1

m∏
k=1

xik,j)
)N,N,...,N

i1,i2,...,im=1
,

which is an mth order Nth dimension tensor.
The optimization problem (1) where ∥ · ∥∗ is m

m−1 norm can
be solved by alternatively solving the following tensor-form
optimization problem

min
α∈[0,∞)N

1⊤α− 1

mAmαm,

where Amαm is the m-mode product.



Special Examples: Tensor Kernel Functions
If we use the basis functions h to obtain the nonlinear
function h(x)⊤ω + b, LD has the form

LD =

N∑
i=1

αi −
1

m

N,N,...,N∑
i1,i2,...,im=1

m∏
k=1

(
αikyik

( n∑
j=1

m∏
k=1

hj(xik)
))

.

Combining with LP, we can write the nonlinear function as

h(x)⊤ω + b =

N,N,...,N∑
i2,i3,...,im

m∏
k=2

(
αikyik

( n∑
j=1

m∏
k=2

hj(xik)hj(x)
))

+ b.

Letting

Km(x, xi2 , . . . , xim) :=
n∑

j=1

m∏
k=2

hj(xik)hj(x),

we can obtain the mth order tensor kernel function.
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Regularization Networks in ℓ1-norm RKBSs
Given an admissible kernel K on X, the related RKBS BK is
defined by

BK :=
{ ∑

t∈suppc
ctK(t, ·) : c ∈ ℓ1(X)

}
with the norm

∥∥∥∑t∈suppc ctK(t, ·)
∥∥∥
BK

:= ∥c∥ℓ1(X), where for
any nonempty set X, we denote

ℓ1(X) :=
{

c = (ct ∈ R : t ∈ X) : ∥c∥ℓ1(X) :=
∑

t∈suppc
|ct| < +∞

}
.

The regularization network in BK is

min
f∈BK

N∑
i=1

L(yi, f(xi)) + λ∥f∥BK , (3)

whose solution is of form fb =
∑N

i=1 ciK(xi, ·) by representer
theorems.



Sparse Representer Theorems
Theorem
Let K : X × X → R be an admissible kernel. If fb is an extreme
point of the solution set of regularization network (3) in BK, then
fb is of form

fb(x) =
M∑

k=1

ckK(zk, x), x ∈ X

where M ≤ N, zk ∈ X and ck ∈ R, k = 1, 2, . . . ,M.

Proof tips:
1 Transfer (3) to an equivalent minimal norm interpolation

problem.
2 Use Theorem 3.1 in (Boyer et al. 2019) to show the special

form of fb.
3 Use special properties of extreme points of a ball in BK to

obtain the final form.
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Summary

1 We extended the classical SVM classifiers to help us
understand 1-norm regularization and provide a new view to
study sparse learning.

2 We supplemented the mathematical backgrounds of 1-norm
SVM classifiers and ℓ1-norm RKBSs.

3 We presented several special examples to show the potential
of the generalization.

4 We proposed a sparse representer theorem to show the power
of sparse learning in ℓ1-norm RKBSs.



Thank You!
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