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Machine Learning

Given

D :=
{
(xi, yi)

}N

i=1
⊆

(
X × {±1}

)N
⊆

(
Rn × {±1}

)N
,

our goal is to find a linear function x⊤ω + b such that for any
i, yi(x⊤

i ω + b) ≥ 0, where ω ∈ Rn, b ∈ R.
Given a special loss function L : R× R → [0,+∞], it is done
by solving

min
ω∈Rn,b∈R

N∑
i=1

L(yi,x⊤
i ω + b).

But it is an ill-posed problem.



Regularization and Sparsity

Regularization is a crucial technique to prevent machine
learning algorithms from over-fitting, it has the general form

min
ω∈Rn,b∈R

N∑
i=1

L(yi,x⊤
i ω + b) + λ∥ω∥22.

The final target of regularization is to obtain a sparse result,
meaning that as many of the components of the parameter
have values of 0 as possible. It is always done by 1-norm
regularization.
Understanding regularization and sparsity can help us to dive
deep into learning theorems. There are many aspects to
explore them, such as functional analysis, convex analysis,
statistical learning, etc..



Support Vector Machine Classifiers

Support Vector Machine Classifier
(SVM classifier) is by far one of the
most successful binary-classification
methods, it can finally be
represented by

min
ω∈Rn,b∈R

N∑
i=1

[1−yi(x⊤
i ω+b)]++λ∥ω∥22.

The Euclidean distance used by the
classical SVM classifier leads to
2-norm regularization.
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Classifiers
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Distances between Points and Hyperplanes

Based on Theorem 2.2 in (O. L. Mangasarian, 1999), the
distance derived from a general norm ∥ · ∥ from any points to
a hyperplane

P := {x : x⊤ω + b = 0 ,x ∈ Rn}

is given by

dist(x,P) = |x⊤ω + b|
∥ω∥∗

,

where ∥ · ∥∗, defined as ∥z∥∗ = sup{z⊤x : ∥x∥ < 1}, is the
dual norm of ∥ · ∥.



Distances between Points and Hyperplanes: Examples

Point
Hyperplane
2 norm projection
1 norm projection

 norm projection

Figure Distances derived from special norms

For 2 norm ∥ · ∥2,

dist(x,P) = ∥x⊤ω + b∥
∥ω∥2

.

For ∞ norm ∥ · ∥∞,

dist(x,P) = ∥x⊤ω + b∥
∥ω∥1

.



Non-Euclidean Support Vector Machine Classifiers

The non-Euclidean SVM classifier has the form

min
ω,b,ξ

∥ω∥∗ + C
N∑

i=1
ξi

subject to yi(xT
i ω + b) ≥ 1− ξi, ∀i,

ξi ≥ 0, ∀i.

(1)

where C is the Lagrangian multiplier, ξ = {ξi}N
i=1 are slack

variables.
It is equivalent to the following unconstrained optimization
problem

min
ω,b

N∑
i=1

[1− yi(xT
i ω + b)]+︸ ︷︷ ︸

Hinge Loss

+ λ∥ω∥∗︸ ︷︷ ︸
Arbitrary Norm Regularization

. (2)



Solutions for Optimization Problems
Proposition (Existences and Conditional Uniqueness of Solutions
for Optimization Problems)

1 Solution sets for constrained optimization problems (1),
unconstrained optimization problem (2) are non-empty,
compact and convex.

2 If ∥ · ∥∗ is strictly convex, constrained optimization problems
(1), unconstrained optimization problem (2) have one and
only one solution.

Theorem (Equivalence Between Solution Sets for Constrained and
Unconstrained Optimization Problems)

1 Suppose v∗ = (ω∗, b∗, ξ∗) is one of the solutions of (1), then
v∗ = (ω∗, b∗) is also one of the solutions of (2).

2 Suppose v∗ = (ω∗, b∗) is one of the solutions of (2), then
v∗ = (ω∗, b∗, ξ∗) is also one of the solutions of (1).



Sparsity of 1-norm SVM Classifiers I

(a) 2 norm. (b) ∞ norm.

Figure Maximal margin classifiers by 2 norm and ∞ norm in the case of 2
distinct points.



Sparsity of 1-norm SVM Classifiers II

(a) Infinite solutions in data space. (b) Infinite solutions in parameter
space.

Figure The geometric explanation for infinite solutions for the SVM
classifier by ∞-norm margin.



Sparsity of 1-norm SVM Classifiers III

(a) Unique solution in data space. (b) Unique solution in parameter
space.

Figure The geometric explanation for unique solution for the SVM
classifier by ∞-norm margin.
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Summary

1 We extended the classical SVM classifiers to help us
understand 1-norm regularization and provide a new view to
study sparse learning.

2 We supplemented the mathematical backgrounds of 1-norm
SVM classifiers.

3 We presented several special examples to show the sparsity by
the 1-norm SVM classifiers.



Thank You!
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