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Conic feasibility problems and error bounds

Conic feasibility problem: Let K ⊂ Rn be a closed convex cone, L be
a subspace of Rn and a ∈ Rn.

Find x ∈ K ∩ (L+ a).

Error bounds: Let θ ∈ (0, 1]. If for every bounded set B, there exists
cB > 0 such that for all x ∈ B

dist(x,K ∩ (L+ a)) ≤ cB(max{dist(x,K),dist(x,L+ a)})θ

then we say {K,L+ a} satisfies a uniform Hölderian error bound with
exponent θ. If θ = 1, we say a Lipschitz error bound holds.

One-step facial residual functions-based approach: The framework
based on facial reduction algorithm (Borwein, Wolkowicz ‘81) and
one-step facial residual functions (1-FRFs) (Lindstrom, Lourenço,
Pong ‘22a) is theoretically adaptable for any closed convex cones
(Lindstrom, Lourenço, Pong ‘22a ‘22b).
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1-FRFs-based approach
Fact: A Lipschitz error bound holds if some constraint qualifications
(CQ) hold for {K,L+ a}.

Partial Polyhedral Slater’s (PPS) condition: The PPS condition holds
for {K,L+ a} if one of the following conditions holds (Lourenço ‘21):

1. K is polyhedral;
2. (L+ a) ∩ riK 6= ∅;
3. K can be written as K = K1 ×K2 where K1 is polyhedral and

(L+ a) ∩ (K1 × riK2) 6= ∅.
Idea: Use the facial reduction algorithm to find a chain of faces:

Fmin = F` ( F`−1 ( · · · ( F1 = K
where Fi+1 = Fi ∩ {zi}⊥ and zi ∈ F∗

i ∩L⊥ ∩ {a}⊥ for i = 1, . . . , `− 1,
such that Fmin satisfies the PPS condition.
In each facial reduction step, use one-step facial residual functions to
connect the “current” and “next” faces and compose them together to
get the whole error bounds.

Notation: The distance to the PPS condition dPPS(K,L+ a) = `− 1.
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The generalized power cone

The generalized power cone: Let m ≥ 1, n ≥ 2 and α = (α1, . . . , αn)
with αi ∈ (0, 1) for all i and

∑n
i=1 αi = 1, the generalized power cone

Pα

m,n and its dual (Pα

m,n)
∗ are given respectively by

P
α

m,n =

{
x = (x, x̃) ∈ IRm+n

∣∣∣ ‖x‖ ≤
n∏

i=1

x̃αi
i , x ∈ IRm, x̃ ∈ IRn

+

}
,

(P
α

m,n)
∗ =

{
z = (z, z̃) ∈ IRm+n

∣∣∣ ‖z‖ ≤
n∏

i=1

(
z̃i

αi

)αi

, z ∈ IRm, z̃ ∈ IRn
+

}
.

Observations:
4 If n = 1, it is exactly a second-order cone.
4 If n = 2 and α1 = α2, it is isomorphic to a second-order cone.
8 In other cases, it is complicated.
H It is self-dual: A cone K is called self-dual if there exists a

positive definite matrix Q such that QK = K∗.

3 / 11



The generalized power cone

The generalized power cone: Let m ≥ 1, n ≥ 2 and α = (α1, . . . , αn)
with αi ∈ (0, 1) for all i and

∑n
i=1 αi = 1, the generalized power cone

Pα

m,n and its dual (Pα

m,n)
∗ are given respectively by

P
α

m,n =

{
x = (x, x̃) ∈ IRm+n

∣∣∣ ‖x‖ ≤
n∏

i=1

x̃αi
i , x ∈ IRm, x̃ ∈ IRn

+

}
,

(P
α

m,n)
∗ =

{
z = (z, z̃) ∈ IRm+n

∣∣∣ ‖z‖ ≤
n∏

i=1

(
z̃i

αi

)αi

, z ∈ IRm, z̃ ∈ IRn
+

}
.

Observations:
4 If n = 1, it is exactly a second-order cone.
4 If n = 2 and α1 = α2, it is isomorphic to a second-order cone.
8 In other cases, it is complicated.

H It is self-dual: A cone K is called self-dual if there exists a
positive definite matrix Q such that QK = K∗.

3 / 11



The generalized power cone

The generalized power cone: Let m ≥ 1, n ≥ 2 and α = (α1, . . . , αn)
with αi ∈ (0, 1) for all i and

∑n
i=1 αi = 1, the generalized power cone

Pα

m,n and its dual (Pα

m,n)
∗ are given respectively by

P
α

m,n =

{
x = (x, x̃) ∈ IRm+n

∣∣∣ ‖x‖ ≤
n∏

i=1

x̃αi
i , x ∈ IRm, x̃ ∈ IRn

+

}
,

(P
α

m,n)
∗ =

{
z = (z, z̃) ∈ IRm+n

∣∣∣ ‖z‖ ≤
n∏

i=1

(
z̃i

αi

)αi

, z ∈ IRm, z̃ ∈ IRn
+

}
.

Observations:
4 If n = 1, it is exactly a second-order cone.
4 If n = 2 and α1 = α2, it is isomorphic to a second-order cone.
8 In other cases, it is complicated.
H It is self-dual: A cone K is called self-dual if there exists a

positive definite matrix Q such that QK = K∗.

3 / 11



Motivations

1. The generalized power cones admit modeling of certain problems
(Nesterov ‘12, Skajaa, Ye ‘15) and have found applications in
geometric programs, generalized location problems, portfolio
optimization, and nonnegativity problems (Chares ‘09, MOSEK
‘22, Skajaa, Ye ‘15, Murray ‘21).

2. The generalized power cone is the final piece of the conic wheel
(MOSEK ‘22), which contains five cones: Rn

+, Qn+1, Sn
+, Kexp,

and Pα

m,n, and it is believed that (Lubin, Yamangil, Bent, Vielma
‘16, MINLPLib ‘22)

Almost all convex constraints which arise in practice are
representable using the five cones in the conic wheel.

The algebraic structure (automorphism group, homogeneity,
reducibility, perfectness) of the generalized power cone is still an
open problem except for the two symmetric cases and some
particular cases, e.g., m = 1, n = 2 and α1 = 1

3 , α2 = 2
3 in

(Truong, Tunçel ‘04).
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Facial structure and 1-FRFs of Pα

m,n

Facial structure: Let z := (z, z̃) ∈ ∂(Pα

m,n)
∗ \ {0}.

• If z 6= 0, Fr := Pα

m,n ∩ {z}⊥ is of form:

Fr := {tf ∈ IRm+n | t ≥ 0} with f = (−z/‖z‖2,α ◦ z̃−1).

• If z = 0, let I := {i | z̃i > 0}, Fz := Pα

m,n ∩ {z}⊥ is:

Fz := {x = (x, x̃) ∈ IRm+n
+ | x = 0, x̃i = 0 ∀i ∈ I}.

1-FRFs:
The following function is a 1-FRF for Pα

m,n and z with z 6= 0:

ψPα
m,n,z(ε, t) := max{ε, ε/‖z‖}+max{2

√
t, 2γ−1

z,t }(ε+max{ε, ε/‖z‖})

The following function is a 1-FRF for Pα

m,n and z with z = 0:

ψPα
m,n,z(ε, t) := max{ε, ε/‖z‖}+max{2t1−β , 2γ−1

z,t }(ε+max{ε, ε/‖z‖})

where β :=
∑

i:̃zi>0 αi.
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Error bounds for Pα

m,n

Theorem 1. Consider the generalized power cone Pα

m,n and its dual
cone (Pα

m,n)
∗. Let L ⊆ Rm+n be a subspace and a ∈ Rm+n be given.

Suppose that (L+ a) ∩ Pα

m,n 6= ∅. Then the following items hold.
1. dPPS(P

α

m,n,L+ a) ≤ 1.
2. If dPPS(P

α

m,n,L+ a) = 0, then a Lipschitz error bound holds.
3. If dPPS(P

α

m,n,L+ a) = 1, consider the chain of faces F ( Pα

m,n
with length being 2.

i. If F = Fr, then a Hölderian error bound with exponent 1
2

holds.
ii. If F = Fz with z ∈ (P

α

m,n)
∗ ∩ L⊥ ∩ {a}⊥, then a Hölderian error

bound with exponent β :=
∑

i:z̃i>0 αi holds.
iii. If F = {0}, then a Lipschitz error bound holds.

4. All these error bounds are the best in the sense stated in
(Lindstrom, Lourenço, Pong ‘22b).
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Automorphisms of Pα

m,n

Automorphism: For a cone K ⊆ IRp, Aut (K) := {A ∈ IRp×p|AK = K}.

Remark: When n = 2 and α = (1/2, 1/2), Pα

m,n is isomorphic to the
second-order cone, whose automorphism group is well-known.

Key ideas: For any closed convex cone K, if AK = K, A must be
invertible and preserve the

:::::::
optimal FRFs and dimensions of faces.

Theorem 2. For m ≥ 1,n > 2 and any α ∈ (0, 1)n such that∑n
i=1 αi = 1, or for m ≥ 1,n = 2 and any α ∈ (0, 1)2 such that

α1 6= α2 and α1 + α2 = 1, it holds that A ∈ Aut (Pα

m,n) if and only if

A =

[
B 0
0 E

]
with B ∈ IRm×m,E ∈ IRn×n

for some (invertible) generalized permutation matrix E with positive
nonzero entries and invertible matrix B satisfying

‖Bx‖ =
n∏

k=1

(Ek,lk )
αlk ‖x‖ for all x ∈ IRm,

where Ek,lk is the nonzero element in the k-th row of E and αlk = αk.
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invertible and preserve the

:::::::
optimal FRFs and dimensions of faces.

Theorem 2. For m ≥ 1,n > 2 and any α ∈ (0, 1)n such that∑n
i=1 αi = 1, or for m ≥ 1,n = 2 and any α ∈ (0, 1)2 such that

α1 6= α2 and α1 + α2 = 1, it holds that A ∈ Aut (Pα

m,n) if and only if

A =

[
B 0
0 E

]
with B ∈ IRm×m,E ∈ IRn×n

for some (invertible) generalized permutation matrix E with positive
nonzero entries and invertible matrix B satisfying

‖Bx‖ =
n∏

k=1

(Ek,lk )
αlk ‖x‖ for all x ∈ IRm,

where Ek,lk is the nonzero element in the k-th row of E and αlk = αk.
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Dimension of Aut (Pα

m,n)

Theorem 3. Let m≥1, n≥2 and α∈(0, 1)n such that
∑n

i=1 αi = 1,
then we have the following statements about dim Aut (Pα

m,n).

1. If m≥1, n=2 and α :=(0.5,0.5), then dim Aut (Pα

m,n)=
m2+3m+4

2 .
2. If m ≥ 1, n > 2 and

∑n
i=1 αi = 1 or m ≥ 1, n = 2, α1 6= α2 and

α1 + α2 = 1, then the Lie algebra of Aut (Pα

m,n), denoted by
Lie Aut (Pα

m,n), is of form:

Lie Aut (P
α

m,n) =

{[
G 0
0 diag(h)

] ∣∣∣ G + G> = 2α>hIm,

G ∈ IRm×m, h ∈ IRn

}
.

Hence, dim Aut (Pα

m,n) = dim Lie Aut (Pα

m,n) = n + m(m−1)
2 .

Key ideas:
1. Aut (Pα

m,n), the automorphism group of Pα

m,n, is a Lie group(a
group that is also a differentiable manifold).

2. The Lie algebra associated with a Lie group is the tangent space
of this Lie group at the identity element.

3. A Lie group and its Lie algebra share the same dimension.
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Reducibility and perfectness

Reducibility: A cone is said to be reducible if it can be expressed as a
direct sum of two nonempty and nontrivial cones.

Perfectness: For a proper cone K ⊆ Rp, its complementarity set is
defined as

C(K) := {(x, s) | x ∈ K, s ∈ K∗, 〈x, s〉 = 0} .

We say that K is perfect (Gowda, Tao ‘14) if there exist p linearly
independent matrices Li ∈ Lie Aut (K) such that

C(K) = {(x, s) | x ∈ K, s ∈ K∗, 〈Lix, s〉 = 0 ∀i} .

������ If a cone is perfect, the dual problem of the corresponding conic
linear programming can be written as a complementarity problem
with a square system, then some specific algorithms can be applied.
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The algebraic structure of Pα

m,n

Corollary 1. Let m≥1, n≥2 and α∈(0, 1)n such that
∑n

i=1 αi = 1,
then the following statements hold for Pα

m,n.
1. Pα

m,n is irreducible.
2. If m ≥ 1,n = 2 and α := (0.5, 0.5), then Pα

m,n is homogeneous
and perfect.

3. If m ≥ 1, n > 2 and
∑n

i=1 αi = 1 or m ≥ 1, n = 2, α1 6= α2 and
α1 + α2 = 1, then Pα

m,n is nonhomogeneous. If 1 ≤ m ≤ 2, then
Pα

m,n is not perfect. If m ≥ 3, then Pα

m,n is perfect.

Key ideas:
1. If a closed convex pointed cone K is reducible, i.e., K is a direct

sum of two nonempty, nontrivial sets K1 and K2, then we have
K1 �C K, K2 �C K and dim(K) = dim(K1) + dim(K2).

2. A cone K is homogeneous if for every x, y ∈ riK, there is a
matrix A such that Ax = y and AK = K.

3. A proper cone K is perfect if and only if dimLieAut(K)≥ dim(K).
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Conclusion

• The error bounds for Pα

m,n are completely established.
• The first result regarding the automorphism group of Pα

m,n.
• The first rigorous proof of the nonhomogeneity of Pα

m,n in the
general case.

• An interesting example of a set of cones that is proved to be
self-dual, irreducible, nonhomogeneous and perfect
simultaneously.

��������� Thanks for listening! ���������
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